熊猫不止是萌 发表于 2022-3-30 08:27:59

Ⅰ期非小细胞肺癌治疗失败表型及预后预测的研究进展

来源:中华肿瘤杂志, 2022,44(3) : 219-227.

DOI:10.3760/cma.j.cn112152-20200605-00527

本文引用:申宇嘉, 傅小龙. Ⅰ期非小细胞肺癌治疗失败表型及预后预测的研究进展 .

摘要

非小细胞肺癌(NSCLC)是严重危害人类健康的常见恶性肿瘤,Ⅰ期NSCLC的主要治疗方式为肺叶切除联合系统性淋巴结清扫,不能耐受或拒绝手术的患者也可采用立体定向放射治疗(SBRT)。虽然Ⅰ期NSCLC患者预后整体较好,但仍有约20%的患者会出现局部复发及远处转移。患者的预后和失败表型存在异质性,无法被病理TNM分期所精准预测。寻找影响I期NSCLC患者预后的危险因素是实现其治疗由经验到精准的关键一步。准确预测高危患者,可以为制定手术后或SBRT后个体化辅助治疗策略提供指导,进而提高Ⅰ期NSCLC的总体疗效。患者的个体相关因素如性别、年龄、全身免疫炎症指标,治疗相关因素如手术切除原发灶及淋巴结范围、不同放射线的选择及不同剂量分割模式,肿瘤相关因素如肿瘤影像学信息、病理学信息及分子生物学信息均与Ⅰ期NSCLC的预后有关。文章将从宿主、肿瘤及治疗相关因素等多方面对Ⅰ期NSCLC治疗失败表型及预后预测的研究进展进行综述。

原发性肺癌是常见的恶性肿瘤,是全世界发病率为第2位和死亡率为第1位的恶性肿瘤。肺癌的主要组织学类型为非小细胞肺癌(non-small cell lung cancer, NSCLC),约占83%。21%的患者确诊时为Ⅰ期,其5年生存率约为73%。手术是Ⅰ期NSCLC的主要治疗手段,手术方式以肺叶切除术联合淋巴结清扫为标准,而对于因年龄较大、合并心脏等基础疾病不能耐受手术或拒绝手术的患者,立体定向放射治疗(stereotactic body radiotherapy, SBRT)又称立体定向消融放疗(stereotactic ablative radiotherapy, SABR)被认为是标准治疗方法。手术的优势在于可明确肿瘤病理并进行准确的淋巴结分期,为术后辅助治疗提供参考,但作为一种有创性、开放性的治疗方法,其治疗相关不良反应及死亡率要高于SBRT。SBRT得益于物理技术的飞速发展,对于Ⅰ期NSCLC的优势在于无创、急性不良反应少、肺功能和生活质量较好,但SBRT通常于无明确病理和准确分期下进行,且治疗后肺纤维化易混淆和掩盖肿瘤复发。手术和SBRT作为目前Ⅰ期NSCLC的两种主要治疗方法,各有其优缺点,对于可手术的Ⅰ期NSCLC,SBRT是否为手术之外的另一选择仍需大型前瞻性随机对照临床试验进一步研究证实。

Ⅰ期NSCLC虽然总体预后较好,但无论手术还是SBRT治疗后仍有局部区域复发或远处转移发生,3年局部区域复发率约为13%~15%和10%~21%,远处转移率约为9%~20%和19%~23%。目前,根据美国国立综合癌症网络(National Comprehensive Cancer Network, NCCN)指南,ⅠA期患者不推荐术后辅助治疗,ⅠB期伴有高危因素患者可考虑进行术后辅助化学治疗。因此,寻找影响预后的危险因素,准确预测高危患者和失败表型,确定哪些患者可能受益于术后或放疗后辅助治疗尤为重要,有利于制定个体化辅助治疗策略,进而进一步提高患者生存。本文对Ⅰ期NSCLC手术后或SBRT治疗后影响预后和失败表型的主要危险因素进行综述如下。

01
Ⅰ期NSCLC术后主要危险因素
(一)个体相关因素

年龄和性别是与NSCLC预后相关的主要个体因素。Ⅰ期NSCLC术后生存预测模型显示,患者年龄>60岁与男性是肺癌特异性生存率(cancer-specific survival, CSS)的独立危险因素。JCOG0201前瞻性研究结果显示,年龄>65岁与较差的无复发生存率(recurrence-free survival, RFS)显著相关。因此Ⅰ期NSCLC治疗选择需要考虑到年龄对治疗方法选择的影响。

全身免疫炎症指标反映了患者自身免疫功能状态,与肿瘤的发展、增殖、血管生成和转移有关,对Ⅰ期NSCLC患者的预后具有重要意义。Meta分析显示,中性粒淋巴细胞比(neutrophil-to-lymphocyte ratio,NLR)和血小板淋巴细胞比(platelet-to-lymphocyte ratio, PLR)较高,淋巴单核细胞比(lymphocyte-to-monocyte ratio,LMR)较低均为NSCLC不良预后的独立影响因素。有文献报道,联合纤维蛋白原浓度和中性粒细胞与淋巴细胞比例、系统免疫炎症指数(中性粒细胞×血小板/淋巴细胞比值)等与预后有关。

(二)治疗相关因素

1.原发病灶切除范围:

对于Ⅰ期NSCLC,NCCN指南推荐肺叶切除,对于肺功能不良且肿瘤最大径≤2 cm的周围型肺癌患者,可考虑选择亚肺叶切除(肺段切除和楔形切除),但需保证肿瘤切缘≥2 cm或≥肿瘤长径,且应行肺门、纵隔淋巴结采样。1995年美国肺癌研究组完成第一项对比肺叶切除与亚肺叶切除治疗肿瘤最大径≤3 cm、临床诊断为T1N0M0期NSCLC患者的前瞻性多中心随机对照研究,结果显示,亚肺叶切除局部复发率和总死亡率高于肺叶切除。有学者对28 241例临床ⅠA期患者进行回顾性队列研究,结果显示,接受肺叶切除、肺段切除及肺楔形切除患者的中位总生存时间(overall survival, OS)分别为99.5、74和67.9个月(P<0.001),肺叶切除可获得比亚肺叶切除更优的生存优势,但在仅对切缘阴性和清扫淋巴结数量≥5枚的患者进行分析时,两组OS差异无统计学意义(P=0.277)。提示Ⅰ期NSCLC中部分患者能从亚肺叶切除中获得与肺叶切除相似的疗效。

有研究显示,基于术中冰冻病理判断肺腺癌处于不典型腺瘤样增生、原位腺癌或微浸润腺癌的准确率高达95.9%,对于这部分患者可采取亚肺叶切除。目前,正在进行的前瞻性随机对照临床试验(美国CALBG 140503和日本JCOG0802/WJOG4607L研究)中,学者在周围型早期NSCLC中基于病灶最大径比较肺叶与亚肺叶切除疗效差异性,研究纳入肿瘤最大径≤2 cm的患者,结果显示,两组患者的主要不良事件发生率差异无统计学意义,肺段切除后更易发生肺泡瘘,患者生存结果尚未公布。

2.淋巴结清扫方式和数目:

NCCN指南对于所有可手术NSCLC淋巴结的清扫推荐系统性淋巴结清扫或采样。ACOSOG Z0030实验组是目前最大规模对比系统性淋巴结清扫和采样的前瞻性多中心随机对照研究,纳入1 023例临床诊断为T1~2N0~1期NSCLC患者,两组患者术后中位OS、5年无病生存率(disease-free survival, DFS),局部、区域、远处复发情况差异均无统计学意义。

基于淋巴结转移规律的研究,日本学者提出了选择性淋巴结清扫概念,针对不同部位的肿瘤采取不同的淋巴结清扫策略。有研究显示,肺叶特异性淋巴结清扫与系统性淋巴结清扫在DFS、OS、肿瘤远处转移和局部复发方面差异均无统计学意义。对于临床Ⅰ期NSCLC,行肺叶特异性淋巴结清扫可以达到与系统性淋巴结清扫相同的临床疗效。来自日本的Ⅲ期临床试验(JCOG1413)是第一个评估淋巴结清扫范围差异是否影响早期NSCLC患者总生存的大型前瞻性试验。

目前,NCCN指南对淋巴结清扫数目没有明确要求。多数研究者认为,淋巴结清扫数目与NSCLC的预后有关。有学者通过对监测、流行病学和最终结果(surveillance, epidemiology, and end results, SEER)数据库分析发现,当清扫淋巴结数目为13~16枚时,生存曲线达到峰值,生存获益最高,但进一步清扫并不能取得更优的生存获益。2016年何建行团队整合国内多中心数据库及美国SEER数据,提出将16枚淋巴结作为量化的清扫标准,但清扫淋巴结数目对预后是否有直接作用仍有争议。

(三)肿瘤相关因素

1.术前影像信息:

根据薄层CT扫描呈现的肺结节密度,将肺结节分为实性结节和亚实性肺结节,后者又分为纯磨玻璃样结节和部分实性肺结节(part-solid nodules, PSNs)。结节中实性成份多少为影响早期NSCLC预后的重要因素。纯实性结节患者与亚实性结节患者比较,5年OS和RFS较差。有学者回顾性分析1 212例ⅠA期肺腺癌患者,分为纯磨玻璃样结节、PSNs和纯实性结节组,5年NSCLC相关RFS分别为99.43%、91.74%和58.08%(P<0.000 1),5年NSCLC相关OS分别为100%、98.13%和80.27% (P<0.000 1)。在PSNs中,肿瘤实性成分比值(consolidation-to-tumor ratio,CTR)、实性成分大小、肿瘤大小或胸膜侵犯等均与患者预后无关,这可能是与部分实性结节整体预后良好有关。CTR越高、实性成分越大、肿瘤越大,其病理诊断为浸润性肺腺癌的可能性就越高。在之后的NSCLC分期中也许需要考虑是否纳入肿瘤影像学特征这个问题。

正电子发射计算机断层扫描(positron emission tomography/computed tomography, PET-CT)可以获得肿瘤组织分子水平上的代谢活性信息,其通常以最大标准化摄取值(maximal standardized uptake value, SUVmax)、肿瘤代谢体积(metabolic tumor volume, MTV)及总糖酵解量(total lesion glycolysis, TLG)来表示。有研究表明,术前PET-CT病灶内高SUVmax、大MTV和高TLG是Ⅰ期NSCLC预测复发相关指标。

2.肿瘤大小:

肿瘤大小是影响Ⅰ期NSCLC预后的重要因素。有学者回顾性分析191例行手术切除的Ⅰ期腺癌患者,结果显示,随着原发灶增大,DFS逐渐降低,但总肿瘤大小(肿瘤最大径)与DFS无关。有研究纳入255例接受手术切除的ⅠA期NSCLC患者,结果显示,肿瘤大小(P=0.04)、CTR(P<0.01)、肿瘤体积(P=0.02)和实体瘤体积(P<0.01)均与DFS有关,多因素分析显示,实体瘤体积为DFS的独立影响因素,对肿瘤体积的评估比横断面测量更精确。已有资料显示,肿瘤最大径≥4 cm的患者,术后应推荐辅助化疗。因此,国际肺癌研究协会将肿瘤最大径≥4 cm从ⅠB期(第7版)改为ⅡA期(第8版)。但目前,学者们普遍认为肿瘤最大径只对放射学表现为纯实性结节NSCLC术后患者的预后产生影响,并不影响亚实性结节NSCLC患者的5年OS。因此,TNM分期中可能需考虑对后者进行单独描述。

3.病理亚型与分化程度:

Ⅰ期肺腺癌和肺鳞癌预后是否存在差异仍有争议。有研究显示,Ⅰ期肺腺癌的5年OS高于肺鳞癌,可能与术后肿瘤复发转移后,肺腺癌有更多药物治疗选择机会有关。肺腺癌中不同病理亚型是影响Ⅰ期NSCLC预后的重要因素。肺腺癌分为原位腺癌、微浸润性腺癌和浸润性腺癌,浸润性腺癌根据病理亚型又分为贴壁为主型、腺泡型、乳头型、微乳头型和实体型。原位和微浸润腺癌以及以贴壁为主的浸润性肺腺癌5年生存率接近100%,而微乳头为主型和实体为主型腺癌预后较差。有学者回顾性研究283例经手术切除的Ⅰ期肺腺癌患者,结果显示,微小乳头状为主和实体型为主的腺癌患者复发风险显著增高(P=0.004),预后较差,实体为主型腺癌患者复发后生存时间更短(P=0.074)。微小乳头状为主和实体型为主的ⅠB期肺腺癌病理亚型是疾病特异生存率和RFS的不良预后因素,对此类高风险患者予以辅助化疗,NSCLC特异性死亡(P=0.031)和复发累积发生率(P=0.017)明显降低。

NCCN指南指出,低分化肿瘤(包括神经内分泌肿瘤但不包括分化良好的神经内分泌肿瘤)是Ⅰ期NSCLC预后较差的因素之一。肿瘤病理分化程度与Ⅰ期NSCLC术后复发及预后有关。低分化和中分化为独立的不良预后因素。在Ⅰ期NSCLC生存预测模型中,分化程度是CSS的独立危险因素,分化程度和肿瘤大小在构建的预测模型中占比重最大。

4.脉管浸润与脏层胸膜浸润(visceral pleural invasion, VPI):

脉管浸润包括血管浸润和淋巴管浸润。826例T1a~2aN0M0期患者中,有血管浸润和无血管浸润患者的5年生存率分别为90.5%和71%(P<0.001),血管浸润是影响Ⅰ期NSCLC预后的独立危险因素。一项纳入20篇有关Ⅰ期NSCLC脉管浸润的Meta分析显示,脉管浸润与较差的RFS (HR=2.52,95% CI:1.73~3.65)和OS(HR=1.81,95% CI:1.53~2.14)有关。由于脉管浸润提示预后不良,有学者建议将脉管浸润加入T分期。对Ⅰ期NSCLC伴脉管浸润患者行术后辅助化疗可显著改善其RFS(P=0.002)和OS(P=0.009)。

根据第8版TNM分期中的定义,不论肿瘤长径大小,只要存在VPI,即将T分期划为T2期,其作为独立危险因素已在TNM分期中出现。一项纳入13篇有关淋巴结阴性NSCLC的VPI对于预后影响的Meta分析显示,VPI是5年生存率的不良预后因素(OR=0.70,95% CI:0.59~0.83,P<0.000 1),亚组分析显示,在肿瘤大小≤3 cm、>3 cm且≤5 cm、>5 cm且≤7 cm三组中,VPI均为危险因素。单独分析ⅠB期结果显示,肿瘤≤3 cm伴VPI与肿瘤>3 cm且≤5 cm不伴VPI组预后差异无统计学意义,但前者预后优于后者。有学者通过对SEER数据库分析,结果显示,仅有在N0(非N1或N2)情况下,VPI与明显较差的3年生存率有关(P<0.001),而随着肿瘤体积增大,其不良预后效应逐渐降低。

5.肿瘤细胞气腔内播散(spread through air spaces, STAS):

STAS是指微乳头结构、实性癌巢或单个细胞,在肺实质的气腔中传播,超出主要瘤灶的边界,主要出现在肺腺癌中,多见于实体型和微乳头为主的肺腺癌亚型。STAS与Ⅰ期NSCLC患者预后密切相关,不论是在肺腺癌中或是肺鳞癌中,RFS和OS均显著降低。ⅠA期伴有STAS的腺癌具有和ⅠB期腺癌相似的RFS和OS,这可能会对未来T分期产生影响。日本学者通过半定量方式评估了STAS对肿瘤长径≤2 cmⅠ期肺腺癌的影响,显微镜下分为无STAS、低STAS(1~4个肿瘤细胞)和高STAS(≥5个肿瘤细胞),其RFS分别为154.2、147.6和115.6个月。STAS是RFS的独立影响因素(P=0.015)。一项包括了14项研究的Meta分析显示,STAS存在于肺腺癌、肺鳞癌及肺多形性癌中,显著降低了术后患者的RFS和OS。

6.分子相关因素的影响:

国外学者使用定量PCR对NSCLC术后石蜡包埋组织样本进行了14个基因(BAG1, BRCA1, CDC6, CDK2AP1, ERBB3, FUT3, IL11, LCK, RND3, SH3BGR, WNT3A,ESD, TBP, YAP1)的表达分析,构建预后模型将Ⅰ期NSCLC患者分成低危、中危、高危组,两个验证集均显示,三组患者的5年生存率差异均有统计学意义。既往对Ⅰ期(T1~2aN0M0)NSCLC研究显示,与表皮生长因子受体(epidermal growth factor receptor, EGFR)野生型患者比较,EGFR突变型患者的复发率更低,5年DFS和OS更长。EGFR突变型被认为是DFS的独立预后标志物。一篇纳入19项研究的Meta分析显示,Ⅰ期NSCLC中EGFR突变患者的DFS与野生型患者相似,19del患者的DFS略低于L858R患者,但差异无统计学意义。与EGFR突变相反,KRAS突变阳性患者的DFS和OS显著差于KRAS野生型患者,KRAS突变是Ⅰ期NSCLC独立的不良预后因素。

循环肿瘤细胞(circulating tumor cell, CTC)是肿瘤组织在生长过程中获得脱离基底膜的能力并入侵通过组织基质进入血管或淋巴管的肿瘤细胞,是肿瘤发生远处转移的关键因素。有学者对97例早期NSCLC(Ⅰ~ⅢA期)接受根治性手术的患者进行了一项前瞻性队列研究,分别检测手术前(CTC1)、术后1个月(CTC2)和术后6个月(CTC3)的CTC,CTC2(HR=2.51,P=0.034)和CTC3(HR=3.62,P=0.057)分别为肺腺癌患者RFS和OS的独立影响因素,而肺鳞癌中CTC计数与预后无关。TRACERx研究中,学者对100例早期NSCLC患者采集术中血液样本检测肺静脉循环肿瘤细胞(pulmonary venous circulating tumor cells, PV-CTCs),校正肿瘤分期的多变量分析后发现,每7.5 ml血液中PV-CTCs≥7个与NSCLC复发有关(P=0.009),PV-CTCs为复发的独立预测因子。手术时收集单个PV-CTCs的基因表达谱与10个月发生转移后转移病灶的突变重叠率(91%)高于原发肿瘤(79%),这强调了PV-CTCs作为NSCLC术后复发早期预测因素的价值。

循环肿瘤DNA(circulating DNA, ctDNA)是指肿瘤细胞体细胞DNA脱落或当细胞凋亡后释放进入循环系统的胞外DNA。血浆检测ctDNA突变状态与肿瘤组织标本检测ctDNA突变状态具有较高的一致性。TRACERx研究前瞻性监测100例早期(Ⅰ~ⅢA期)NSCLC患者从确诊到复发的演变过程,于术前和术后多个时间点采集血液样本。有研究显示,ctDNA可以提供肿瘤大小信息,在NSCLC中ctDNA的突变等位基因频率与肿瘤体积呈线性关系。93%的复发患者中血液样品检测出至少2个单核苷酸变异(single-nucleotide variants, SNVs),而仅有10%未复发患者检测出至少2个SNVs,即ctDNA预测早期NSCLC复发的灵敏度为93%,且ctDNA突变检出比传统CT确诊复发平均早70 d,同时,ctDNA可预测辅助化疗的耐药性现象,若化疗后血液中基因突变数量不减反增,则复发的可能性较大。ctDNA的出现是肿瘤复发和不良预后的预测指标。

(四)肿瘤微环境相关因素

肿瘤微环境中免疫细胞数量、种类、功能与NSCLC预后密切相关。目前普遍认为CD8+细胞毒性T细胞、CD3+T细胞和CD45RO+记忆T细胞与NSCLC预后呈正相关,而髓系来源抑制细胞(myeloid-derived suppressor cells, MDSCs)则显示出强大的免疫抑制能力,通常与预后呈负相关。一项针对797例Ⅰ~ⅢA期NSCLC患者的研究显示,肿瘤间质中CD8+T细胞密度为DFS和OS的独立的预后影响因素,且在不同病理分期中均有统计学意义,而Foxp3+Tregs的高浸润通常被认为是不利预后因素。

02
Ⅰ期NSCLC接受SBRT后主要危险因素
(一)个体相关因素

与手术相似,Ⅰ期NSCLC接受SBRT治疗后生存预测模型显示,老年和男性是OS和无进展生存时间(progression-free survival, PFS)的影响因素, Charlson合并症指数、一氧化碳扩散能力、全身免疫炎症指数也与Ⅰ期NSCLC放疗后预后转归有关。治疗前NLR和PLR较高,LMR较低,皆为不良预后的独立影响因素。

(二)治疗相关因素

1.生物有效剂量与分割剂量:

一项多中心、Ⅲ期随机对照临床研究(CHISEL)显示,与标准放疗比较,SABR可显著提高Ⅰ期(T1~2aN0M0)NSCLC患者的局部控制率,并能改善患者的总生存。因此,目前对于因基础疾病不能耐受手术或拒绝手术的患者,SBRT被认为是标准治疗方法。

日本一项研究显示,接受生物有效剂量(biologic effective dose, BED)≥100 Gy的患者放疗后局部控制率和总生存率显著优于接受BED<100 Gy的患者。与BED为100~129 Gy的患者比较,接受BED≥130 Gy的患者的OS显著较好,但该研究未比较两组不良事件的发生情况。生存预测模型显示,95%计划靶区生物等效剂量(PTV D95 BED10)<113 Gy是OS和PFS的独立危险因素,与局部和远处进展均显著相关。因此,从疗效与安全性等方面综合考虑,目前NCCN指南和欧洲肿瘤内科学会指南皆推荐BED≥100 Gy的方案。

在分割剂量方面,RTOG0813作为一项剂量爬坡研究,评估中央型NSCLC患者接受SBRT剂量从50 Gy分5次完成递增至60 Gy分5次完成的疗效,结果显示,5次剂量分割SBRT治疗中央型NSCLC的最大耐受剂量为12.0 Gy每次,剂量限制不良反应发生率为7.2%,2年局部控制率为87.9%,2年生存率为72.7%;11.5~12.0 Gy每次的剂量能够取得与外周型NSCLC相当的治疗效果。

2.不同射线:

用于肿瘤治疗的放射线主要分为光子放射线和粒子放射线,粒子放射线包括质子线和重离子线。质子治疗和重离子治疗都属于粒子治疗(particle beam therapy, PBT),在放疗深度-剂量曲线上形成布拉格峰,可大大减少高剂量照射对肿瘤周围健康组织的剂量,与光子比较,PBT具有明显的物理和剂量学上的优势。一篇比较粒子束与SBRT治疗早期NSCLC的Meta分析纳入72项SBRT研究和9项PBT研究,结果显示,粒子束治疗改善总生存并降低不良反应,但在考虑混杂变量后,两组患者生存率差异无统计学意义,但粒子束治疗患者的3年局部控制显著较好(P=0.03)。一项关于早期NSCLC对比SBRT和立体定向质子治疗(stereotactic body proton therapy, SBPT)的Ⅱ期随机试验,由于缺乏体积成像引导和入组人数有限,试验提前结束,试验有限分析显示,SBPT治疗后的结果(OS、PFS、局部控制率、区域控制率和局部-区域控制率)不差于SBRT治疗后的结果,甚至可能优于SBRT,两组的总不良反应均较低,但仍需临床随机试验进一步证明。

(三)肿瘤相关因素

1.术前影像信息:

胸部CT影像中结节实性成份多少同样是影响早期NSCLC放疗预后的重要因素。有学者回顾性分析了237例Ⅰ期NSCLC接受SBRT治疗的患者,结果显示,CTR与较差的DFS有关(P<0.001)。PET-CT图像中SUVmax也与早期NSCLC接受SBRT治疗预后和失败表型有关,SBRT治疗前SUVmax>3与较低的OS和较高的局部失败、远处转移有关。有学者利用影像组学研究发现,PET-CT图像的2个放射学特征与接受SBRT NSCLC患者的局部控制独立相关,整合出的预测模型可提供局部复发相关信息,为临床决策提供参考。

2.病理因素:

由于放疗前常缺乏病理相关信息,Ⅰ期NSCLC接受SBRT治疗后影响预后和失败表型的病理相关危险因素主要为肿瘤大小。Kang等构建的Ⅰ期NSCLC接受SBRT治疗的生存预测模型显示,肿瘤长径>2.45 cm为OS和PFS的独立预测因子,肿瘤长径与局部和远处进展均显著相关。不同病理类型如Ⅰ期肺腺癌和鳞癌接受SBRT后预后转归有无差异性,目前尚未明确。Abel等分析15 110例早期(Ⅰ~ⅡA期)NSCLC患者接受SBRT后,肺腺癌与肺鳞癌患者的5年生存率分别为36%和24%(P<0.000 1),肺鳞癌为独立不良预后因素。由于治疗前常缺乏病理亚型信息,仍需要随机、前瞻性研究来进一步验证以上结果。病理分化程度、脉管浸润、VPI、STAS是否影响Ⅰ期SBRT治疗疗效和失败表型目前未见报道。

3.分子相关因素:

CTC同样是影响早期NSCLC放疗预后的重要因素。放疗后患者CTC计数显著下降。Frick等对92例Ⅰ期(T1~2aN0M0)接受SBRT治疗的NSCLC患者行前瞻性观察,收集放疗前、中、后的CTC计数,SBRT前CTC计数≥5个/ml与放疗后淋巴结转移(HR=3.92,P=0.04)和远处转移(HR=4.29,P=0.03)的增加有关,但与OS无关;放疗后CTC计数持续呈阳性组患者2年远处转移率显著升高(HR=15.1,P=0.04),但OS未观察到相似结果。CTC计数可能潜在地识别出SBRT后局部或远处复发风险较高的患者。驱动基因突变状态、ctDNA在Ⅰ期NSCLC接受SBRT治疗后的临床预测价值不够明确。

03
小结
Ⅰ期NSCLC无论手术还是SBRT治疗,总体预后较好,但个体间仍存在一定的差异性。影响Ⅰ期NSCLC预后及失败表型的因素涉及到宿主、肿瘤及治疗方法等多方面因素,未来需要建立多维度动态的预测Ⅰ期NSCLC术后或SBRT后预后及失败表型模型,才能更加有效提升个体化精准治疗水平。

利益冲突所有作者声明无利益冲突

参考文献

SiegelRL, MillerKD, FuchsHE, et al. Cancer statistics, 2021. CA Cancer J Clin, 2021, 71(1):7-33. DOI:10.3322/caac.21654.

MillerKD, NogueiraL, MariottoAB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin, 2019, 69(5):363-385. DOI:10.3322/caac.21565.

oldstrawP, ChanskyK, CrowleyJ, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J Thorac Oncol, 2016, 11(1):39-51. DOI:10.1016/j.jtho.2015.09.009.

CCN clinical practice guidelines in oncology. Non-small cell lung cancer(Version 2.2020). . https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf.

enanS, PaulMA, LagerwaardFJ. Treatment of early-stage lung cancer detected by screening: surgery or stereotactic ablative radiotherapy?. Lancet Oncol, 2013, 14(7):e270-e274. DOI:10.1016/S1470-2045(12)70592-2.

hangJY, SenanS, PaulMA, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stageⅠ non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol, 2015, 16(6):630-637. DOI:10.1016/S1470-2045(15)70168-3.

an den BergLL, KlinkenbergTJ, GroenH, et al. Patterns of recurrence and survival after surgery or stereotactic radiotherapy for early stage NSCLC. J Thorac Oncol, 2015, 10(5):826-831. DOI:10.1097/JTO.0000000000000483.

allD, MaiGT, VinodS, et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol, 2019, 20(4):494-503. DOI:10.1016/S1470-2045(18)30896-9.

arlottoJM, RechtA, FlickingerJC, et al. Varying recurrence rates and risk factors associated with different definitions of local recurrence in patients with surgically resected, stage Ⅰ nonsmall cell lung cancer. Cancer, 2010, 116(10):2390-2400. DOI:10.1002/cncr.25047.

unB, BrooksED, KomakiRU, et al. 7-year follow-up after stereotactic ablative radiotherapy for patients with stage Ⅰ non-small cell lung cancer: Results of a phase 2 clinical trial. Cancer, 2017, 123(16):3031-3039. DOI:10.1002/cncr.30693.

engY, MayneN, YangCJ, et al. A nomogram for predicting cancer-specific survival of TNM 8th edition stage Ⅰ non-small-cell lung cancer. Ann Surg Oncol, 2019, 26(7):2053-2062. DOI:10.1245/s10434-019-07318-7.

sutaniY, SuzukiK, KoikeT, et al. High-risk factors for recurrence of stage Ⅰ lung adenocarcinoma: follow-up data from JCOG0201. Ann Thorac Surg, 2019, 108(5):1484-1490. DOI:10.1016/j.athoracsur.2019.05.080.

rivennikovSI, GretenFR, KarinM. Immunity, inflammation, and cancer. Cell, 2010, 140(6):883-899. DOI:10.1016/j.cell.2010.01.025.

uangW, WangS, ZhangH, et al. Prognostic significance of combined fibrinogen concentration and neutrophil-to-lymphocyte ratio in patients with resectable non-small cell lung cancer. Cancer Biol Med, 2018, 15(1):88-96. DOI:10.20892/j.issn.2095-3941.2017.0124.

angHB, XingM, MaLN, et al. Prognostic significance of neutrophil-lymphocyteratio/platelet-lymphocyteratioin lung cancers: a meta-analysis. Oncotarget, 2016, 7(47):76769-76778. DOI:10.18632/oncotarget.12526.

iW, MaG, WuQ, et al. Prognostic value of lymphocyte-to-monocyte ratio among Asian lung cancer patients: a systematic review and meta-analysis. Oncotarget, 2017, 8(66):110606-110613. DOI:10.18632/oncotarget.20574.

angH, ZhaoJ, ZhangM, et al. The combination of plasma fibrinogen and neutrophil lymphocyte ratio (F-NLR) is a predictive factor in patients with resectable non small cell lung cancer. J Cell Physiol, 2018, 233(5):4216-4224. DOI:10.1002/jcp.26239.

aoY, ZhangH, LiY, et al. Preoperative increased systemic immune-inflammation index predicts poor prognosis in patients with operable non-small cell lung cancer. Clin Chim Acta, 2018, 484:272-277. DOI:10.1016/j.cca.2018.05.059.

insbergRJ, RubinsteinLV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung cancer study group. Ann Thorac Surg, 1995, 60(3):615-622. DOI:10.1016/0003-4975(95)00537-u.

hullarOV, LiuY, GillespieT, et al. Survival after sublobar resection versus lobectomy for clinical stage ⅠA lung cancer: an analysis from the national cancer data base. J Thorac Oncol, 2015,10(11):1625-1633. DOI:10.1097/JTO.0000000000000664.

iuS, WangR, ZhangY, et al. Precise diagnosis of intraoperative frozen section is an effective method to guide resection strategy for peripheral small-sized lung adenocarcinoma. J Clin Oncol, 2016, 34(4):307-313. DOI:10.1200/jco.2015.63.4907.

lasbergJD, PassHI, DoningtonJS. Sublobar resection: a movement from the lung cancer study group. J Thorac Oncol, 2010, 5(10):1583-1593. DOI:10.1097/jto.0b013e3181e77604.

akamuraK, SajiH, NakajimaR, et al. A phase Ⅲ randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L). Jpn J Clin Oncol, 2010, 40(3):271-274. DOI:10.1093/jjco/hyp156.

ltorkiNK, WangX, WigleD, et al. Perioperative mortality and morbidity after sublobar versus lobar resection for early-stage non-small-cell lung cancer: post-hoc analysis of an international, randomised, phase 3 trial (CALGB/Alliance 140503). Lancet Respir Med, 2018, 6(12):915-924. DOI:10.1016/S2213-2600(18)30411-9.

uzukiK, SajiH, AokageK, et al. Comparison of pulmonary segmentectomy and lobectomy: safety results of a randomized trial. J Thorac Cardiovasc Surg, 2019, 158(3):895-907. DOI:10.1016/j.jtcvs.2019.03.090.

owingtonJA, BlumMG, ChangAC, et al. Treatment of stage Ⅰ and Ⅱ non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest, 2013, 143(Suppl 5):e278S-e313S. DOI:10.1378/chest.12-2359.

arlingGE, AllenMS, DeckerPA, et al. Randomized trial of mediastinal lymph node sampling versus complete lymphadenectomy during pulmonary resection in the patient with N0 or N1 (less than hilar) non-small cell carcinoma: results of the American college of surgery oncology group Z0030 trial. J Thorac Cardiovasc Surg, 2011, 141(3):662-670. DOI:10.1016/j.jtcvs.2010.11.008.

kadaM, TsubotaN, YoshimuraM, et al. Proposal for reasonable mediastinal lymphadenectomy in bronchogenic carcinomas: role of subcarinal nodes in selective dissection. J Thorac Cardiovasc Surg, 1998, 116(6):949-953. DOI:10.1016/S0022-5223(98)70045-5.

kadaM, SakamotoT, YukiT, et al. Selective mediastinal lymphadenectomy for clinico-surgical stage Ⅰ non-small cell lung cancer. Ann Thorac Surg, 2006, 81(3):1028-1032. DOI:10.1016/j.athoracsur.2005.09.078.

ishidaT, SajiH, WatanabeSI, et al. A randomized Phase Ⅲ trial of lobe-specific vs. systematic nodal dissection for clinical Stage Ⅰ-Ⅱ non-small cell lung cancer (JCOG1413). Jpn J Clin Oncol, 2018, 48(2):190-194. DOI:10.1093/jjco/hyx170.

udwigMS, GoodmanM, MillerDL, et al. Postoperative survival and the number of lymph nodes sampled during resection of node-negative non-small cell lung cancer. Chest, 2005, 128(3):1545-1550. DOI:10.1378/chest.128.3.1545.

sarogiagbonRU, OgbataO, YuX. Number of lymph nodes associated with maximal reduction of long-term mortality risk in pathologic node-negative non-small cell lung cancer. Ann Thorac Surg, 2014, 97(2):385-393. DOI:10.1016/j.athoracsur.2013.09.058.

iangW, HeJ, ShenY, et al. Impact of examined lymph node count on precise staging and long-term survival of resected non-small-cell lung cancer: a population study of the US SEER database and a Chinese multi-institutional registry. J Clin Oncol, 2017, 35(11):1162-1170. DOI:10.1200/JCO.2016.67.5140.

acMahonH, NaidichDP, GooJM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017. Radiology, 2017, 284(1):228-243. DOI:10.1148/radiol.2017161659.

attoriA, MatsunagaT, TakamochiK, et al. Importance of ground glass opacity component in clinical stage ⅠA radiologic invasive lung cancer. Ann Thorac Surg, 2017, 104(1):313-320. DOI:10.1016/j.athoracsur.2017.01.076.

attoriA, MatsunagaT, HayashiT, et al. Prognostic impact of the findings on thin-section computed tomography in patients with subcentimeter non-small cell lung cancer. J Thorac Oncol, 2017, 12(6):954-962. DOI:10.1016/j.jtho.2017.02.015.

attoriA, MatsunagaT, TakamochiK, et al. Prognostic impact of a ground glass opacity component in the clinical T classification of non-small cell lung cancer. J Thorac Cardiovasc Surg, 2017, 154(6):2102-2110.e1. DOI:10.1016/j.jtcvs.2017.08.037.

eT, DengL, WangS, et al. Lung adenocarcinomas manifesting as radiological part-solid nodules define a special clinical subtype. J Thorac Oncol, 2019, 14(4):617-627. DOI:10.1016/j.jtho.2018.12.030.

uF, ZhangY, WenZ, et al. Distinct prognostic factors in patients with stage Ⅰ non-small cell lung cancer with radiologic part-solid or solid lesions. J Thorac Oncol, 2019, 14(12):2133-2142. DOI:10.1016/j.jtho.2019.08.002.

wonW, HowardBA, HerndonJE, et al. FDG uptake on positron emission tomography correlates with survival and time to recurrence in patients with stage Ⅰ non-small-cell lung cancer. J Thorac Oncol, 2015, 10(6):897-902. DOI:10.1097/JTO.0000000000000534.

yunSH, ChoiJY, KimK, et al. Volume-based parameters of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection. Ann Surg, 2013, 257(2):364-370. DOI:10.1097/SLA.0b013e318262a6ec.

ortJL, KentMS, KorstRJ, et al. Tumor size predicts survival within stage ⅠA non-small cell lung cancer. Chest, 2003, 124(5):1828-1833. DOI:10.1378/chest.124.5.1828.

anagawaN, ShionoS, AbikoM, et al. New IASLC/ATS/ERS classification and invasive tumor size are predictive of disease recurrence in stage Ⅰ lung adenocarcinoma. J Thorac Oncol, 2013, 8(5):612-618. DOI:10.1097/JTO.0b013e318287c3eb.

akenakaT, YamazakiK, MiuraN, et al. The prognostic impact of tumor volume in patients with clinical stage ⅠA non-small cell lung cancer. J Thorac Oncol, 2016, 11(7):1074-1080. DOI:10.1016/j.jtho.2016.02.005.

arkSy, LeeJg, KimJ, et al. Efficacy of platinum-based adjuvant chemotherapy in T2aN0 stage ⅠB non-small cell lung cancer. J Cardiothorac Surg, 2013, 11(8):151. DOI:10.1186/1749-8090-8-151.

angBY, HuangJY, ChenHC, et al. The comparison between adenocarcinoma and squamous cell carcinoma in lung cancer patients. J Cancer Res Clin Oncol, 2020, 146(1):43-52. DOI:10.1007/s00432-019-03079-8.

belS, HasanS, WhiteR, et al. Stereotactic ablative radiotherapy (SABR) in early stage non-small cell lung cancer: comparing survival outcomes in adenocarcinoma and squamous cell carcinoma. Lung Cancer, 2019, 128:127-133. DOI:10.1016/j.lungcan.2018.12.022.

ravisWD, BrambillaE, NoguchiM, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol, 2011, 6(2):244-285. DOI:10.1097/JTO.0b013e318206a221.

oshizawaA, SumiyoshiS, SonobeM, et al. Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol, 2013, 8(1):52-61. DOI:10.1097/JTO.0b013e3182769aa8.

ungJJ, JengWJ, ChouTY, et al. Prognostic value of the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification on death and recurrence in completely resected stage Ⅰ lung adenocarcinoma. Ann Surg, 2013, 258(6):1079-1086. DOI:10.1097/SLA.0b013e31828920c0.

ianF, YangW, WangR, et al. Prognostic significance and adjuvant chemotherapy survival benefits of a solid or micropapillary pattern in patients with resected stage ⅠB lung adenocarcinoma. J Thorac Cardiovasc Surg, 2018, 155(3):1227-1235.e2. DOI:10.1016/j.jtcvs.2017.09.143.

uoSW, ChenJS, HuangPM, et al. Prognostic significance of histologic differentiation, carcinoembryonic antigen value, and lymphovascular invasion in stage Ⅰ non-small cell lung cancer. J Thorac Cardiovasc Surg, 2014, 148(4):1200-1207.e3. DOI:10.1016/j.jtcvs.2014.04.038.

aitoY, GotoK, NagaiK, et al. Vascular invasion is a strong prognostic factor after complete resection of node-negative non-small cell lung cancer. Chest, 2010, 138(6):1411-1417. DOI:10.1378/chest.10-0185.

ollbergNM, BennetteC, HowellE, et al. Lymphovascular invasion as a prognostic indicator in stage Ⅰ non-small cell lung cancer: a systematic review and meta-analysis. Ann Thorac Surg, 2014, 97(3):965-971. DOI:10.1016/j.athoracsur.2013.11.002.

uffiniE, AsioliS, FilossoPL, et al. Significance of the presence of microscopic vascular invasion after complete resection of Stage Ⅰ-Ⅱ pT1-T2N0 non-small cell lung cancer and its relation with T-Size categories: did the 2009 7th edition of the TNM staging system miss something?. J Thorac Oncol, 2011, 6(2):319-326. DOI:10.1097/JTO.0b013e3182011f70.

angS, XuJ, WangR, et al. Adjuvant chemotherapy may improve prognosis after resection of stage Ⅰ lung cancer with lymphovascular invasion. J Thorac Cardiovasc Surg, 2018, 156(5):2006-2015.e2. DOI:10.1016/j.jtcvs.2018.06.034.

iangL, LiangW, ShenJ, et al. The impact of visceral pleural invasion in node-negative non-small cell lung cancer: a systematic review and meta-analysis. Chest, 2015, 148(4):903-911. DOI:10.1378/chest.14-2765.

angX, SunF, ChenL, et al. Prognostic value of visceral pleural invasion in non-small cell lung cancer: a propensity score matching study based on the SEER registry. J Surg Oncol, 2017, 116(3):398-406. DOI:10.1002/jso.24677.

ravisWD, BrambillaE, NicholsonAG, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol, 2015, 10(9):1243-1260. DOI:10.1097/JTO.0000000000000630.

adotaK, NitadoriJI, SimaCS, et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage Ⅰ lung adenocarcinomas. J Thorac Oncol, 2015, 10(5):806-814. DOI:10.1097/JTO.0000000000000486.

arthA, MuleyT, KossakowskiCA, et al. Prognostic impact of intra-alveolar tumor spread in pulmonary adenocarcinoma. Am J Surg Pathol, 2015, 39(6):793-801. DOI:10.1097/PAS.0000000000000409.

adotaK, KushidaY, KatsukiN, et al. Tumor spread through air spaces is an independent predictor of recurrence-free survival in patients with resected lung squamous cell carcinoma. Am J Surg Pathol, 2017, 41(8):1077-1086. DOI:10.1097/PAS.0000000000000872.

aiC, XieH, SuH, et al. Tumor spread through air spaces affects the recurrence and overall survival in patients with lung adenocarcinoma >2 to 3 cm. J Thorac Oncol, 2017, 12(7):1052-1060. DOI:10.1016/j.jtho.2017.03.020.

rugaH, FujiiT, FujimoriS, et al. Semiquantitative assessment of tumor spread through air spaces (STAS) in early-stage lung adenocarcinomas. J Thorac Oncol, 2017, 12(7):1046-1051. DOI:10.1016/j.jtho.2017.03.019.

henD, MaoY, WenJ, et al. Tumor spread through air spaces in non-small cell lung cancer: a systematic review and meta-analysis. Ann Thorac Surg, 2019, 108(3):945-954. DOI:10.1016/j.athoracsur.2019.02.045.

ratzJR, HeJ, Van Den EedenSK, et al. A practical molecular assay to predict survival in resected non-squamous, non-small-cell lung cancer: development and international validation studies. Lancet, 2012, 379(9818):823-832. DOI:10.1016/S0140-6736(11)61941-7.

zarB, SequistL, LeeM, et al. The impact of EGFR mutation status on outcomes in patients with resected stage Ⅰ non-small cell lung cancers. Ann Thorac Surg, 2013, 96(3):962-968. DOI:10.1016/j.athoracsur.2013.05.091.

eQ, XinP, ZhangM, et al. The impact of epidermal growth factor receptor mutations on the prognosis of resected non-small cell lung cancer: a meta-analysis of literatures. Transl Lung Cancer Res, 2019, 8(2):124-134. DOI:10.21037/tlcr.2019.03.14.

zarB, ZhouH, HeistRS, et al. The prognostic impact of KRAS, its codon and amino acid specific mutations, on survival in resected stage Ⅰ lung adenocarcinoma. J Thorac Oncol, 2014,9(9):1363-1369. DOI:10.1097/JTO.0000000000000266.

oosseSA, GorgesTM, PantelK. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med, 2015, 7(1):1-11. DOI:10.15252/emmm.201303698.

e Miguel-PérezD, Bayarri-LaraCI, OrtegaFG, et al. Post-surgery circulating tumor cells and AXL overexpression as new poor prognostic biomarkers in resected lung adenocarcinoma. Cancers (Basel), 2019, 11(11):1750. DOI:10.3390/cancers11111750.

hemiF, RothwellDG, McGranahanN, et al. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat Med, 2019, 25(10):1534-1539. DOI:10.1038/s41591-019-0593-1.

ahrS, HentzeH, EnglischS, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res, 2001, 61(4):1659-1665.

henKZ, LouF, YangF, et al. Circulating tumor DNA detection in early-stage non-small cell lung cancer patients by targeted sequencing. Sci Rep, 2016, 6:31985. DOI:10.1038/srep31985.

bboshC, BirkbakNJ, WilsonGA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature, 2017, 545(7655):446-451. DOI:10.1038/nature22364.

runiD, AngellHK, GalonJ. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer, 2020, 20(11):662-680. DOI:10.1038/s41568-020-0285-7.

onnemT, HaldSM, PaulsenEE, et al. Stromal CD8+ T-cell density—a promising supplement to TNM staging in non-small cell lung cancer. Clin Cancer Res, 2015, 21(11):2635-2643. DOI:10.1158/1078-0432.CCR-14-1905.

haoS, JiangT, ZhangL, et al. Clinicopathological and prognostic significance of regulatory T cells in patients with non-small cell lung cancer: a systematic review with meta-analysis. Oncotarget, 2016, 7(24):36065-36073. DOI:10.18632/oncotarget.9130.

angJ, NingMS, FengH, et al. Predicting 5-year progression and survival outcomes for early stage non-small cell lung cancer treated with stereotactic ablative radiation therapy: development and validation of robust prognostic nomograms. Int J Radiat Oncol Biol Phys, 2020, 106(1):90-99. DOI:10.1016/j.ijrobp.2019.09.037.

uoH, GeH, CuiY, et al. Systemic inflammation biomarkers predict survival in patients of early stage non-small cell lung cancer treated with stereotactic ablative radiotherapy: a single center experience. J Cancer, 2018, 9(1):182-188. DOI:10.7150/jca.21703.

annonNA, MeyerJ, IyengarP, et al. Neutrophil-lymphocyte and platelet-lymphocyte ratios as prognostic factors after stereotactic radiation therapy for early-stage non-small-cell lung cancer. J Thorac Oncol, 2015, 10(2):280-285. DOI:10.1097/JTO.0000000000000399.

nishiH, ArakiT, ShiratoH, et al. Stereotactic hypofractionated high-dose irradiation for stage Ⅰ nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer, 2004, 101(7):1623-1631. DOI:10.1002/cncr.20539.

orenoAC, FellmanB, HobbsBP, et al. Biologically effective dose in stereotactic body radiotherapy and survival for patients with early-stage NSCLC. J Thorac Oncol, 2020, 15(1):101-109. DOI:10.1016/j.jtho.2019.08.2505.

ansteenkisteJ, CrinòL, DoomsC, et al. 2nd ESMO consensus conference on lung cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol, 2014, 25(8):1462-1474. DOI:10.1093/annonc/mdu089.

ezjakA, PaulusR, GasparLE, et al. Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non-small-cell lung cancer: NRG oncology/RTOG 0813 trial. J Clin Oncol, 2019, 37(15):1316-1325. DOI:10.1200/JCO.18.00622.

itinT, ZietmanAL. Promise and pitfalls of heavy-particle therapy. J Clin Oncol, 2014, 32(26):2855-2863. DOI:10.1200/JCO.2014.55.1945.

hangJY, JabbourSK, De RuysscherD, et al. Consensus statement on proton therapy in early-stage and locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 2016, 95(1):505-516. DOI:10.1016/j.ijrobp.2016.01.036.

hiA, ChenH, WenS, et al. Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: a systematic review and hypothesis-generating meta-analysis. Radiother Oncol, 2017, 123(3):346-354. DOI:10.1016/j.radonc.2017.05.007.

antavithyaC, GomezDR, WeiX, et al. Phase 2 study of stereotactic body radiation therapy and stereotactic body proton therapy for high-risk, medically inoperable, early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys, 2018, 101(3):558-563. DOI:10.1016/j.ijrobp.2018.02.022.

surugaiY, KozukaT, IshizukaN, et al. Relationship between the consolidation to maximum tumor diameter ratio and outcomes following stereotactic body radiotherapy for stage Ⅰ non-small-cell lung cancer. Lung Cancer, 2016, 92:47-52. DOI:10.1016/j.lungcan.2015.12.003.

ohutekZA, WuAJ, ZhangZ, et al. FDG-PET maximum standardized uptake value is prognostic for recurrence and survival after stereotactic body radiotherapy for non-small cell lung cancer. Lung Cancer, 2015, 89(2):115-120. DOI:10.1016/j.lungcan.2015.05.019.

issauxG, VisvikisD, Da-AnoR, et al. Pretreatment (18)F-FDG PET/CT radiomics predict local recurrence in patients treated with stereotactic body radiotherapy for early-stage non-small cell lung cancer: a multicentric study. J Nucl Med, 2020, 61(6):814-820. DOI:10.2967/jnumed.119.228106.

rickMA, KaoGD, AguarinL, et al. Circulating tumor cell assessment in presumed early stage non-small cell lung cancer patients treated with stereotactic body radiation therapy: a prospective pilot study. Int J Radiat Oncol Biol Phys, 2018, 102(3):536-542. DOI:10.1016/j.ijrobp.2018.06.041.

rickMA, FeigenbergSJ, Jean-BaptisteSR, et al. Circulating tumor cells are associated with recurrent disease in patients with early-stage non-small cell lung cancer treated with stereotactic body radiotherapy. Clin Cancer Res, 2020, 26(10):2372-2380. DOI:10.1158/1078-0432.CCR-19-2158.


页: [1]
查看完整版本: Ⅰ期非小细胞肺癌治疗失败表型及预后预测的研究进展